Scuola Materna Statale "Ccavallotti" e Scuola Elementare "Govi"

E127

Via Felice Cavallotti 10, Genova

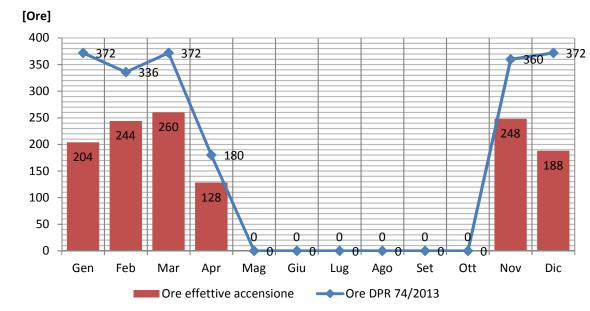
RAPPORTO DI DIAGNOSI ENERGETICA

FONDO KYOTO - SCUOLA 3

Luglio 2018

COMUNE DI GENOVA STRUTTURA DI STAFF - ENERGY MANAGER

COMUNE DI GENOVA


Nell'ambito del servizio di Audit e Diagnosi Energetica, denominato Fondo Kyoto - Scuola 3, il presente foglio di calcolo si pone l'obiettivo di supportare la compilazione del modello di rapporto di diagnosi energetica denominato "DE_Lotto.n - CodiceEdificio", attraverso la predisposzione di grafici e tabelle preordinate. Qualsiasi parere, suggerimento d'investimento o giudizio su fatti, persone o società che possa scaturire dall'utilizzo di questo foglio di calcolo da parte di terzi è di esclusiva responsabilità del soggetto terzo che emana tale parere, suggerimento o giudizio. Il Comune di Genova non si assume alcuna responsabilità per le conseguenze che possano scaturire da qualsiasi uso di questo foglio di calcolo da parte di terzi. Questo documento contiene informazioni riservate e di proprietà intellettuale esclusiva. E' vietata la riproduzione totale o parziale, in qualsiasi forma o mezzo e di qualsiasi parte del presente foglio di calcolo senza l'autorizzazione scritta da parte del Comune di Genova.

Legenda

Output Input

mese	Giorni	Giorni riscaldamento DPR 412/93	Ore giornaliere accensione DPR 74/2013	Ore accensione DPR 74/2013	Giorni effettivi accensione impianto	Ore giornaliere accensione	Ore effettive accensione
Gen	31	31	12	372	17	12	204
Feb	28	28	12	336	20	12	244
Mar	31	31	12	372	22	12	260
Apr	30	15	12	180	11	12	128
Mag	31	0			0		
Giu	30	0			0		
Lug	31	0			0		
Ago	31	0			0		
Set	30	0			0		
Ott	31	0			0		
Nov	30	30	12	360	21	12	248
Dic	31	31	12	372	16	12	188
	365	166		1992	106		1272

Figura 2.4 – Andamento mensile delle ore effettive di utilizzo dell'impianto termico

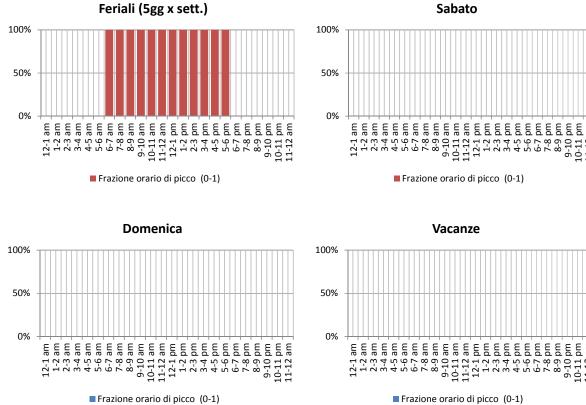
Legenda

Output Input

NB: Riferirsi ai grafici riportati all'interno del file GG_lotto.X-EXXXX, ottenuti inserendo i dati climatici della centralina considerata

Figura 3.2 – Andamento mensile dei GG reali per il triennio di riferimento
Figura 3.3 – Andamento mensile dei GG reali valutati in condizione di effettivo utilizzo degli impianti, per il
triennio di riferimento

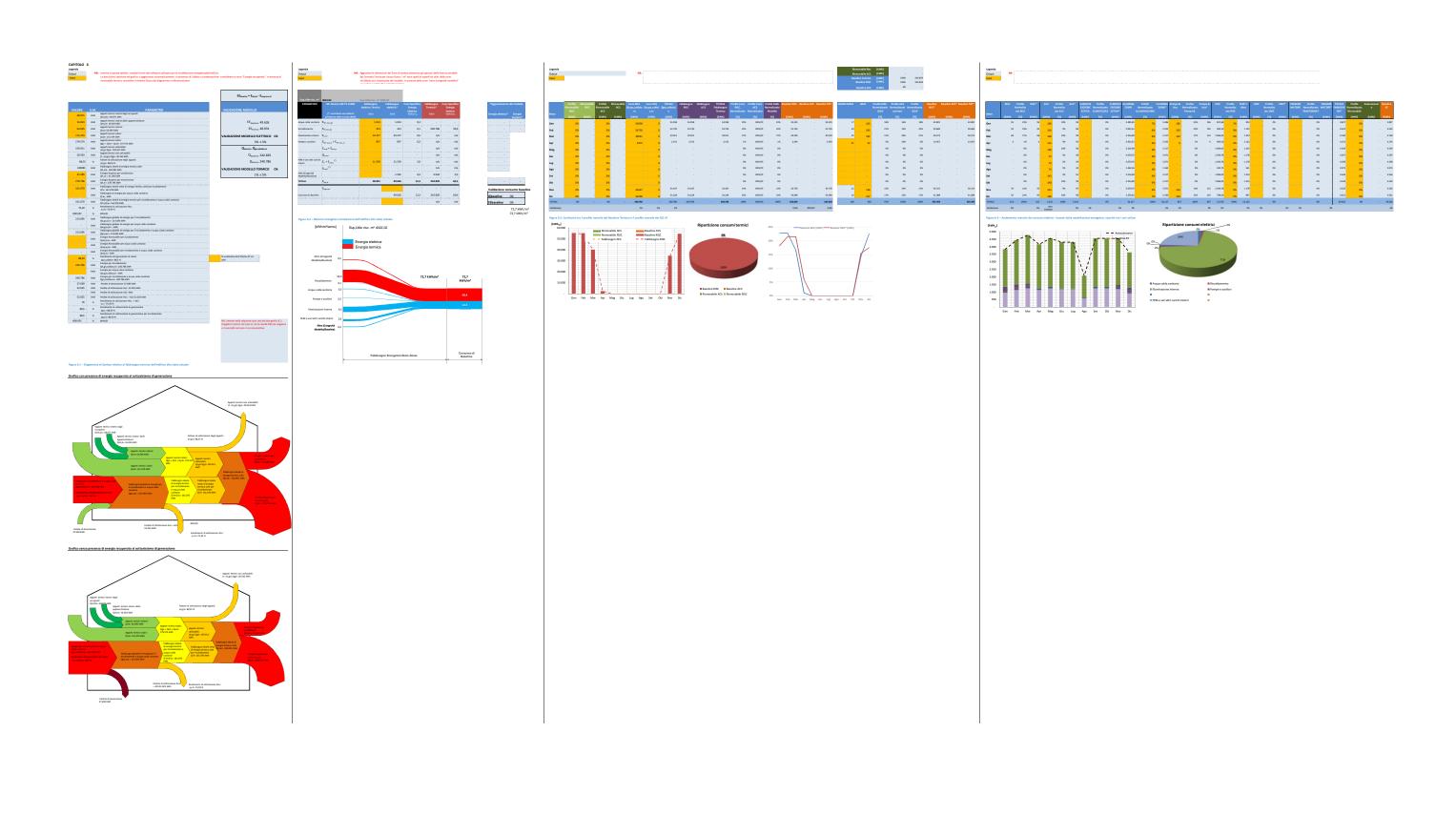
Legenda Output


Input

NB: Replicare tabella e grafici per ciascuna zona termica individuata nella diagnosi. Inserire nel report solo grafici con profili significativi (valori non nulli)

1 Zona termica: [...]

1 Zona termica:	[]				
	Ore	Feriali (5gg x sett.)	Sabato	Domenica	Vacanze
	12-1 am	-	-	-	-
	1-2 am	-	-	-	-
	2-3 am	-	-	-	-
	3-4 am	-	-	-	-
	4-5 am	-	-	-	-
	5-6 am	-	-	-	-
	6-7 am	1,00	-	-	-
	7-8 am	1,00	-	-	-
(0-1	8-9 am	1,00	-	-	-
8	9-10 am	1,00	-	-	-
. <u>≅</u>	10-11 am	1,00	-	-	-
. <u>6</u>	11-12 am	1,00	-	-	-
Frazione orario di picco (0-1)	12-1 pm	1,00	-	-	-
one	1-2 pm	1,00	-	-	-
razi	2-3 pm	1,00	-	-	-
ш.	3-4 pm	1,00	-	-	-
	4-5 pm	1,00	-	-	-
	5-6 pm	1,00	-	-	-
	6-7 pm	-	-	-	-
	7-8 pm	-	-	-	-
	8-9 pm	-	-	-	-
	9-10 pm	-	-	-	-
	10-11 pm	-	-	-	-
	11-12 am	-	-	-	-
		_	-	_	-


Figura 4.11 - Profili di funzionamento invernale dell'impianto per la zona termica [...]

2 Zona termica: [...]

· · · · · · · · · · · · · · · · · · ·			
8-9 pm 9-10 pm 10-11 pm 11-12 am 11-12 am 11-13 mm 11-			
8 1011 111			
8-9 pm 9-10 pm 10-11 am 11-12 am			
10 pr 11 pr 12 ar			
8 10-1 111-1			
<u> </u>			

EEM1: Cappotto

Legenda
Output
Input

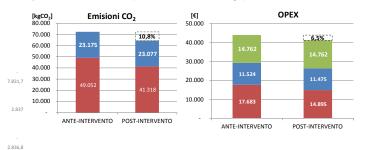
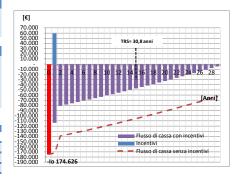

NB: Duplicare il presente foglio tante volte quante sono le EEM analizzate

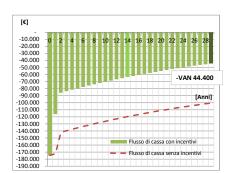
Tabella 8.1 - Risultati analisi FFM1 - Inon

Tabella 0.1	Misultati alialisi EEIVIT	[HOTHE HITELVEITE)

	ANTE- INTERVENTO	POST- INTERVENTO	BASELINE
[W/m²K]	Vedi Allegato E	<0,26	#VALOR
[kWh]	240.786	202.822	15,8
[kWh]	48.031	47.828	0,4
[kWh]	242.829	204.544	15,8
[kWh]	49.626	49.416	0,4
[kgCO ₂]	49.052	41.318	15,8
[kgCO ₂]	23.175	23.077	0,4
[kgCO ₂]	72.227	64.395	10,8
[€]	17.683	14.895	15,8
[€]	11.524	11.475	0,4
[€]	29.207	26.370	9,7
[€]	11.662	11.662	0,0
[€]	3.100	3.100	0,0
[€]	14.762	14.762	0,0
[€]	43.969	41.132	6,5
[-]	F	F	+ 0 clas
	[W/m³k] [kWh] [kWh] [kWh] [kWh] [kWh] [kgC0 ₂] [kgC0 ₂] [kgC0 ₂] [c] [c] [c] [c] [c] [c] [c]	Winter Wed Allegate	W/m*k Vedi Allegato E 0,26

Vettori energetici	TIPO VETTORE Tab Capitolato	FATTORE DI CONVERSIONE [kgCO ₂ /kWh]	Cu [€/kWh]
Vettore termico	Gas naturale	0,202	0,073
Vettore elettrico	Elettricità	0,467	0,232


Figura 9.1 – EEM1: Flussi di Cassa, con e senza incentivi


Figura 9.2 – EEM1: Flussi di Cassa Attualizzati, con e senza ince

PARMETRO FINANZIARIO		U.M.	VALORE
Investimento Iniziale	l _o	€	169.540
Oneri Finanziari %I ₀	OF	[%]	3,0%
Aliquota IVA	%IVA	[%]	22,0%
Anno recupero erariale IVA	n _{IVA}	anni	3
Vita utile	n	anni	30
Incentivo annuo	В	€/anno	58.224
Durata incentivo	n _B	anni	1
Tasso di attualizzazione	i	[%]	3,5%
INDICE FINANZIARIO DI PROGETTO		VALORE SENZA INCENTIVI	VALORE CON INCENTIVI
Tempo di rientro semplice	TRS	46,9	30,8
Tempo di rientro attualizzato	TRA	70,6	40,2
Valore attuale netto	VAN	- 100.384	- 44.400
Tasso interno di rendimento	TIR	-3,2%	-0,3%
Indice di profitto	IP	-0.59	-0.26

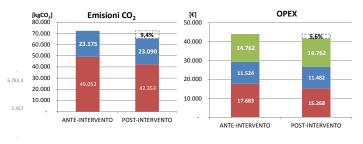
■ O&M (CMO + CMS)

Fornitura Elettrica

TRS= 30,8 anni TRA= 40,2 anni VAN= -44399,7 €

					-	-			,		- 11	12	13	14	13	10	
											3.722,1		2.474,7		5.662,9		4.3
					OPEX PRE	OPEX POST	Incentivi	Rissparmi		FCFO	30	VAN	30	FCFO	30	VAN	
_					1.213.379	1.132.289	58.224	81.090		62.963	-	100.384		- 4.740	-	44.400	
			CAPEX		CC	OSTI	RI	CAVI			Flusso di cassa ser	nza incentivi			Flusso di cassa co	in incentivi	
		lo		Rimborso IVA	OPEX PRE	OPEX POST	INCENTIVI	RISPARMI OPEX	Fattore di annualità				FCCA				
0	0	- 169.540 -	5.086	-					1,000 -	174.626 -	174.626 -	174.626 -	174.626	- 174.626 -	174.626 -	174.626 -	1
1	1	ı		-	36.389	34.035	58.224	2.353	0,962	2.353 -	172.273	2.263 -	172.363	60.577 -	114.049	58.247 -	1
2	2			30.573	36.741	34.360	-	2.382	0,925	32.954 -	139.318	30.468 -	141.895	32.954 -	81.095	30.468 -	
8	3	:		-	37.097	34.687	-	2.410	0,889	2.410 -	136.908	2.143 -	139.753	2.410 -	78.685	2.143 -	
	4	ŀ		-	37.457	35.018	-	2.439	0,855	2.439 -	134.469	2.085 -	137.667	2.439 -	76.245	2.085 -	
5	5	i		-	37.821	35.353	-	2.469	0,822	2.469 -	132.001	2.029 -	135.639	2.469 -	73.777	2.029 -	
6	6	5		-	38.189	35.691	-	2.498	0,790	2.498 -	129.502	1.974 -	133.664	2.498 -	71.279	1.974 -	
7	7	,		-	38.561	36.033	-	2.528	0,760	2.528 -	126.974	1.921 -	131.743	2.528 -	68.750	1.921 -	
8	8	:		-	38.937	36.378	-	2.559	0,731	2.559 -	124.415	1.870 -	129.873	2.559 -	66.192	1.870 -	
9	9			-	39.317	36.727	-	2.590	0,703	2.590 -	121.826	1.819 -	128.054	2.590 -	63.602	1.819 -	
10	10			-	39.701	37.080	-	2.621	0,676	2.621 -	119.205	1.770 -	126.283	2.621 -	60.981	1.770 -	
11	11			-	40.090	37.437	-	2.652	0,650	2.652 -	116.553	1.723 -	124.560	2.652 -	58.329	1.723 -	
12	12			-	40.482	37.798	-	2.684	0,625	2.684 -	113.869	1.677 -	122.884	2.684 -	55.645	1.677 -	
ı	13	:		-	40.879	38.162	-	2.716	0,601	2.716 -	111.152	1.631 -	121.253	2.716 -	52.928	1.631 -	
14	14	ı		-	41.280	38.531	-	2.749	0,577	2.749 -	108.403	1.588 -	119.665	2.749 -	50.179	1.588 -	
15	15	:		-	41.686	38.903	-	2.782	0,555	2.782 -	105.621	1.545 -	118.120	2.782 -	47.397	1.545 -	
16	16	i		-	42.096	39.280	-	2.816	0,534	2.816 -	102.805	1.503 -	116.617	2.816 -	44.581	1.503 -	
17	17	,		-	42.510	39.660	-	2.850	0,513	2.850 -	99.955	1.463 -	115.154	2.850 -	41.732	1.463 -	
18	18	:		-	42.929	40.045	-	2.884	0,494	2.884 -	97.071	1.424 -	113.730	2.884 -	38.848	1.424 -	
19	19			-	43.352	40.434	-	2.919	0,475	2.919 -	94.153	1.385 -	112.345	2.919 -	35.929	1.385 -	
20	20			-	43.781	40.827	-	2.954	0,456	2.954 -	91.199	1.348 -	110.997	2.954 -	32.975	1.348 -	
21	21			-	44.213	41.224	-	2.989	0,439	2.989 -	88.210	1.312 -	109.685	2.989 -	29.986	1.312 -	
22	22			-	44.651	41.626	-	3.025	0,422	3.025 -	85.184	1.277 -	108.409	3.025 -	26.961	1.277 -	
23	23	:		-	45.093	42.032	-	3.062	0,406	3.062 -	82.123	1.242 -	107.166	3.062 -	23.899	1.242 -	
24	24	ı		-	45.541	42.442	-	3.099	0,390	3.099 -	79.024	1.209 -	105.957	3.099 -	20.801	1.209 -	
25	25			-	45.993	42.857	-	3.136	0,375	3.136 -	75.888	1.176 -	104.781	3.136 -	17.665	1.176 -	
26	26			-	46.450	43.276	-	3.174	0,361	3.174 -	72.715	1.145 -	103.637	3.174 -	14.491	1.145 -	
27	27			-	46.912	43.700	-	3.212	0,347	3.212 -	69.503	1.114 -	102.523	3.212 -	11.280	1.114 -	
28	28			-	47.379	44.129	-	3.250	0,333	3.250 -	66.253	1.084 -	101.439	3.250 -	8.029	1.084 -	
29	29			-	47.852	44.562	-	3.290	0,321	3.290 -	62.963	1.055 -	100.384	3.290 -	4.740	1.055 -	
0 -				-		-		-	-		-				-	-	

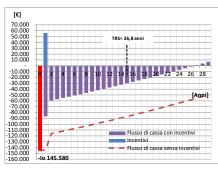
EEM2: Copertura


O&M (C_{MO} + C_{MS}) OPEX

Output

NB: Duplicare il presente foglio tante volte quante sono le EEM analizzate

CALCOLO RISPARMIO		INTERVENTO	INTERVENTO	BASELINE
EM1 [Parametro caratteristico dell'intervento]	[W/m²K]	Vedi Allegato E	<0,22	#VALORE
Q _{teorico}	[kWh]	240.786	207.905	13,7%
EE _{teorico}	[kWh]	48.031	47.854	0,4%
Q _{baseline}	[kWh]	242.829	209.670	13,7%
EE _{Baseline}	[kWh]	49.626	49.443	0,4%
Emiss. CO2 Termico	[kgCO ₂]	49.052	42.353	13,7%
Emiss. CO2 Elettrico	[kgCO ₂]	23.175	23.090	0,4%
Emiss. CO2 TOT	[kgCO ₂]	72.227	65.443	9,4%
Fornitura Termica, C _Q	[€]	17.683	15.268	13,7%
Fornitura Elettrica, C _{EE}	[€]	11.524	11.482	0,4%
Fornitura Energia, C _E	[€]	29.207	26.750	8,4%
C _{MO}	[€]	11.662	11.662	0,0%
C _{MS}	[€]	3.100	3.100	0,0%
O&M (C _{MO} + C _{MS})	[€]	14.762	14.762	0,0%
OPEX	[€]	43.969	41.512	5,6%
Classe energetica	[-]	F	F	+ 0 class


	Vettorl energetici	TIPO VETTORE	FATTORE DI CONVERSIONE			
		Tab Capitolato	[kgCO ₂ /kWh]	[€/kWh]		
١	ettore termico	Gas naturale	0,202	0,073		
١	/ettore elettrico	Elettricità	0,467	0,232		

56.536 [€]

Durata incentivo	1 [Anni]					
Incentivo annuo	56.536 [€/anno]					
PARAM	METRI FINANZIARI					
Tasso di sconto	R	4,0% [%]				
Tasso di inflazione vettore energetico	f	0,5% [%]				
Deriva dell'inflazione vettore energetico	f've	0,7% [%]				
Tasso di inflazione manutenzioni	f	0,5% [%]				
Deriva dell'inflazione manutenzioni	f'm	0,0% [%]				
Tasso di attualizzazione	i	3,5% [%]				

Tabella 9.2 – Risultati dell'analisi di convenienza della EEM1

PARMETRO FINANZIARIO		U.M.	VALORE
Investimento Iniziale	l _o	€	141.339
Oneri Finanziari %I ₀	OF	[%]	3,0%
Aliquota IVA	%IVA	[%]	22,0%
Anno recupero erariale IVA	n _{IVA}	anni	3
Vita utile	n	anni	30
Incentivo annuo	В	€/anno	56.536
Durata incentivo	n ₈	anni	:
Tasso di attualizzazione	i	[%]	3,5%
INDICE FINANZIARIO DI PROGETTO		VALORE SENZA INCENTIVI	VALORE CON INCENTIVI
Tempo di rientro semplice	TRS	45,6	26,8
Tempo di rientro attualizzato	TRA	68,9	37,
Valore attuale netto	VAN	- 82.193	- 27.832
Tasso interno di rendimento	TIR	-3,0%	0,69
Indice di profitto	IP	-0.58	-0.2

-0- 2- 4- 6- 8- 10- 12- 14 TRA-37,1 anni 14- 26- 28 [€]

Flusso di cassa con incentivi - Flusso di cassa senza incentivi

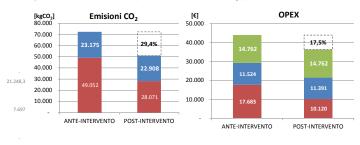
Figura 9.2 – EEM1: Flussi di Cassa Attualizzati, con e senza incentivi

■ 0&M (CMO + CMS)

■ Fornitura Elettrica

TRS= 26,8 anni TRA= 37,1 anni

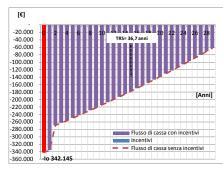
	1	2 3	4 5	6	7	8	9	10	11	12	13	14	15	16	
									3.190,8		2.112,9		5.429,4		
			OPEX PRE	OPEX POST	Incentivi	Rissparmi		FCFO	30	VAN	30	FCFO	27	VAN	
			1.213.379	1.143.142	56.536	70.236		- 49.856	-	82.193		6.680	-	27.832	
		CAPEX	C	OSTI	RIC	W	Fattore di		Flusso di cassa se	nza incentivi			Flusso di cassa ci	on incentivi	
	Anno	Io OF Rimborso IV.	OPEX PRE	OPEX POST	INCENTIVI	RISPARMI OPEX	annualità	FCFO	FCC	FCA	FCCA	FCFO	FCC	FCA	F
0	C	- 141.339 - 4.240 -					1,000	- 145.580 -	145.580 -	145.580 -	145.580	145.580 -	145.580 -	145.580 -	
1	1	-	36.389	34.350	56.536	2.038	0,962	2.038 -	143.541	1.960 -	143.620	58.574 -	87.006	56.321 -	
2	2	25.48	7 36.741	34.678	-	2.063	0,925	27.550 -	115.991	25.472 -	118.148	27.550 -	59.455	25.472 -	
3	3	-	37.097	35.010	-	2.088	0,889	2.088 -	113.904	1.856 -	116.292	2.088 -	57.368	1.856 -	
4	4	-	37.457	35.345	-	2.113	0,855	2.113 -	111.791	1.806 -	114.486	2.113 -	55.255	1.806 -	
5	5	-	37.821	35.683	-	2.138	0,822	2.138 -	109.653	1.757 -	112.729	2.138 -	53.117	1.757 -	
6	6	·	38.189	36.025	-	2.164	0,790	2.164 -	107.489	1.710 -	111.019	2.164 -	50.953	1.710 -	
7	7	1	38.561	36.371	-	2.190	0,760	2.190 -	105.299	1.664 -	109.354	2.190 -	48.763	1.664 -	
8	8	-	38.937	36.721	-	2.216	0,731	2.216 -	103.083	1.619 -	107.735	2.216 -	46.547	1.619 -	
9	9	-	39.317	37.074	-	2.243	0,703	2.243 -	100.840	1.576 -	106.159	2.243 -	44.304	1.576 -	
10	10	-	39.701	37.431	-	2.270	0,676	2.270 -	98.570	1.533 -	104.626	2.270 -	42.034	1.533 -	
11	11	-	40.090	37.792	-	2.297	0,650	2.297 -	96.272	1.492 -	103.133	2.297 -	39.737	1.492 -	
12	12		40.482	38.157	-	2.325	0,625	2.325 -	93.948	1.452 -	101.681	2.325 -	37.412	1.452 -	
13	13		40.879	38.526	-	2.353	0,601	2.353 -	91.595	1.413 -	100.268	2.353 -	35.059	1.413 -	
14	14	-	41.280	38.899	-	2.381	0,577	2.381 -	89.213	1.375 -	98.893	2.381 -	32.678	1.375 -	
15	15	-	41.686	39.276	-	2.410	0,555	2.410 -	86.804	1.338 -	97.555	2.410 -	30.268	1.338 -	
16	16	-	42.096	39.657	-	2.439	0,534	2.439 -	84.365	1.302 -	96.253	2.439 -	27.829	1.302 -	
17	17	-	42.510	40.042	-	2.468	0,513	2.468 -	81.897	1.267 -	94.986	2.468 -	25.361	1.267 -	
18	18		42.929	40.431	-	2.498	0,494	2.498 -	79.399	1.233 -	93.753	2.498 -	22.863	1.233 -	
19	-		43.352	40.824	-	2.528	0,475	2.528 -	76.871	1.200 -	92.553	2.528 -	20.335	1.200 -	
20	20	-	43.781	41.222	-	2.558	0,456	2.558 -	74.312	1.168 -	91.385	2.558 -	17.777	1.168 -	
21	21		44.213	41.624	-	2.589	0,439	2.589 -	71.723	1.136 -	90.249	2.589 -	15.187	1.136 -	
22	22		44.651	42.031	-	2.620	0,422	2.620 -	69.103	1.106 -	89.143	2.620 -	12.567	1.106 -	
23	_		45.093	42.442	-	2.652	0,406	2.652 -	66.451	1.076 -	88.067	2.652 -	9.915	1.076 -	
24	24		45.541	42.857		2.684	0,390	2.684 -	63.767	1.047 -	87.020	2.684 -	7.231	1.047 -	
25	25		45.993	43.277	-	2.716	0,375	2.716 -	61.051	1.019 -	86.002	2.716 -	4.515	1.019 -	
26	26		46.450	43.701	-	2.749	0,361	2.749 -	58.302	991 -	85.010	2.749 -	1.766	991 -	
27	27		46.912	44.130	-	2.782	0,347	2.782 -	55.520	965 -	84.045	2.782	1.016	965 -	
28	28		47.379	44.564	-	2.815	0,333	2.815 -	52.705	939 -	83.106	2.815	3.831	939 -	
29	29	-	47.852	45.002	-	2.849	0,321	2.849 -	49.856	914 -	82.193	2.849	6.680	914 -	

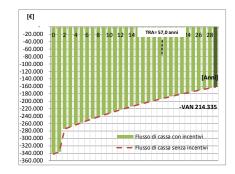

CAPITOLO EEM3: Infissi

Legenda Output Input

NB: Duplicare il presente foglio tante volte quante sono le EEM analizzate

CALCOLO RISPARMIO		ANTE- INTERVENTO	POST- INTERVENTO	RIDUZIONE DAL BASELINE
EM1 [Parametro caratteristico dell'intervento]	[W/m²K]	Vedi Allegato E	<1,67	#VALORE
Q _{teorico}	[kWh]	240.786	137.794	42,8%
EE _{teorico}	[kWh]	48.031	47.477	1,2%
Q _{baseline}	[kWh]	242.829	138.964	42,8%
EE _{Baseline}	[kWh]	49.626	49.053	1,2%
Emiss. CO2 Termico	[kgCO ₂]	49.052	28.071	42,8%
Emiss. CO2 Elettrico	[kgCO ₂]	23.175	22.908	1,2%
Emiss. CO2 TOT	[kgCO ₂]	72.227	50.978	29,4%
Fornitura Termica, C _Q	[€]	17.683	10.120	42,8%
Fornitura Elettrica, C _{EE}	[€]	11.524	11.391	1,2%
Fornitura Energia, C _E	[€]	29.207	21.510	26,4%
C _{MO}	[€]	11.662	11.662	0,0%
C _{MS}	[€]	3.100	3.100	0,0%
O&M (C _{MO} + C _{MS})	[€]	14.762	14.762	0,0%
OPEX	[€]	43.969	36.272	17,5%
Classe energetica	[-]	F	E	+ 1 classe





	Vettorl energetici	TIPO VETTORE	FATTORE DI CONVERSIONE	
		Tab Capitolato	[kgCO ₂ /kWh]	[€/kWh]
ĺ	Vettore termico	Gas naturale	0,202	0,073
i	Vettore elettrico	Elettricità	0,467	0,232

complessivo		- [€]	[€]		
ncentivo		1 [Anni]	[c]		
annuo		- [€/anno]	-20.000	0 2 4 6 8 10 13 14 16 10 20 22 24	1
			-40.000	TRS= 36,7 anni	H
PARAN	METRI FINANZIARI		-60.000	· - <mark>-</mark>	Н
sconto	R	4,0% [%]	-80.000		Н
			-100.000		-
inflazione vettore energetico	1	0,5% [%]	-120.000		+
ell'inflazione vettore energetico	f' _{ve}	0,7% [%]	-140.000		+
inflazione manutenzioni	f	0,5% [%]	-160.000		+

	9.2 – Risultati deli analisi di convenienza della EEMI							
PARMETRO FINANZIARIO		U.M.	VALORE					
Investimento Iniziale	I ₀	€	332.180					
Oneri Finanziari %I ₀	OF	[%]	3,09					
Aliquota IVA	%IVA	[%]	22,09					
Anno recupero erariale IVA	n _{IVA}	anni						
Vita utile	n	anni	31					
Incentivo annuo	В	€/anno	-					
Durata incentivo	n ₈	anni						
Tasso di attualizzazione	i	[%]	3,59					
INDICE FINANZIARIO DI PROGETTO		VALORE SENZA INCENTIVI	VALORE CON INCENTIVI					
Tempo di rientro semplice	TRS	36,7	36,					
Tempo di rientro attualizzato	TRA	57,0	57,					
Valore attuale netto	VAN	- 162.023	- 162.023					
Tasso interno di rendimento	TIR	-1,5%	-1,59					
Indice di profitto	IP	-0.49	-0.4					

■ 0&M (CMO + CMS)

TRS= 36,7 anni TRA= 57,0 anni VAN= -162022,6 €

	1	2	3	4	5	6		7 8	9	10	11	12	13	14	15	16	
											9.330,4		6.004,1		9.330,4		6.004,
					OPEX PRE	OPEX POST	Incentivi	Rissparmi		FCFO	30	VAN	30	FCFO	30	VAN	
					1.213.379	993.367	-	220.011		- 62.232	-	162.023		62.232		162.023	
			CAPEX			OSTI		ICAVI	Fattore di		Flusso di cassa se				Flusso di cassa c		
	Anno	lo	OF	Rimborso IVA	OPEX PRE	OPEX POST	INCENTIVI	RISPARMI OPEX	annualità	FCFO	FCC	FCA	FCCA	FCFO	FCC	FCA	FCCA
0	0	- 332.180 -	9.965	-					1,000	- 342.145 -		342.145 -	342.145 -	342.145 -	342.145 -	342.145 -	342.1
1	1			-	36.389	30.004	-	6.385	0,962	6.385 -		6.139 -	336.006	6.385 -	335.760	6.139 -	336.0
2	2			59.901	36.741	30.280	-	6.461	0,925	66.363 -		61.356 -	274.650	66.363 -	269.398	61.356 -	274.6
3	3			-	37.097	30.558	-	6.539	0,889	6.539 -		5.813 -	268.837	6.539 -	262.858	5.813 -	268.8
4	4				37.457 37.821	30.839 31.124		6.618 6.698	0,855 0,822	6.618 - 6.698 -		5.657 - 5.505 -	263.179 257.675	6.618 - 6.698 -	256.240 249.543	5.657 - 5.505 -	263.1 257.6
5	5			-	38.189	31.411		6.778	0,822	6.778 -		5.357 -	252.318	6.778 -	249.545	5.357 -	252.3
7	7				38.561	31.701		6.860	0,760	6.860 -		5.213 -	247.105	6.860 -	235.905	5.213 -	247.1
8	8			_	38.937	31.995	_	6.942	0,731	6.942 -		5.073 -	242.032	6.942 -	228.963	5.073 -	242.0
9	9			_	39.317	32.291	_	7.026	0,703	7.026 -		4.936 -	237.096	7.026 -	221.937	4.936 -	237.0
10	10				39.701	32.591		7.110	0,676	7.110 -		4.804 -	232.292	7.110 -	214.826	4.804 -	232.2
11	11				40.090	32.894		7.196	0,650	7.196 -	207.630	4.674 -	227.618	7.196 -	207.630	4.674 -	227.6
12	12				40.482	33.199	-	7.283	0,625	7.283 -	200.348	4.549 -	223.069	7.283 -	200.348	4.549 -	223.0
13	13			-	40.879	33.509	-	7.370	0,601	7.370 -	192.977	4.426 -	218.643	7.370 -	192.977	4.426 -	218.
14	14			-	41.280	33.821	-	7.459	0,577	7.459 -	185.518	4.307 -	214.335	7.459 -	185.518	4.307 -	214.
15	15			-	41.686	34.137	-	7.549	0,555	7.549 -	177.970	4.192 -	210.144	7.549 -	177.970	4.192 -	210.
16	16			-	42.096	34.456	-	7.640	0,534	7.640 -	170.330	4.079 -	206.065	7.640 -	170.330	4.079 -	206.
17	17			-	42.510	34.778	-	7.732	0,513	7.732 -	162.599	3.969 -	202.096	7.732 -	162.599	3.969 -	202.0
18	18			-	42.929	35.104	-	7.825	0,494	7.825 -	154.774	3.862 -	198.233	7.825 -	154.774	3.862 -	198.2
19	19			-	43.352	35.434	-	7.919	0,475	7.919 -	146.855	3.759 -	194.475	7.919 -	146.855	3.759 -	194.4
20	20			-	43.781	35.767	-	8.014	0,456	8.014 -		3.658 -	190.817	8.014 -	138.841	3.658 -	190.8
21	21			-	44.213	36.103	-	8.110	0,439	8.110 -		3.559 -	187.258	8.110 -	130.731	3.559 -	187.2
22	22			-	44.651	36.443	-	8.208	0,422	8.208 -		3.463 -	183.795	8.208 -	122.523	3.463 -	183.7
23	23			-	45.093	36.787	-	8.307	0,406	8.307 -		3.370 -	180.424	8.307 -	114.216	3.370 -	180.4
24	24 25				45.541 45.993	37.134 37.485		8.407 8.508	0,390	8.407 - 8.508 -		3.280 - 3.192 -	177.145 173.953	8.407 - 8.508 -	105.809 97.301	3.280 - 3.192 -	177.:
25	25			-	45.993	37.485		8.508	0,375 0,361	8.610 -		3.192 -	173.953	8.508 -	97.301 88.690	3.192 -	170.8
25	26				46.450	37.839		8.510	0,361	8.510 -		3.106 -	167.825	8.610 -	79.976	3.106 -	167.8
28	28				47.379	38.560		8.819	0,347	8.819 -		2.941 -	164.884	8.819 -	79.976	2.941 -	164.8
29	29				47.852	38.926		8.925	0,333	8.925 -		2.862 -	162.023	8.925 -	62.232	2.862 -	

CAPITOLO EEM4: Valvole termostatiche

Legenda

NB: Duplicare il presente foglio tante volte quante sono le EEM analizzate

Output

Tabella 8.1 – Risultati analisi EEM1 – [nome intervento]

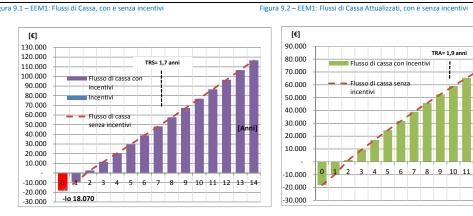
CALCOLO RISPARMIO		ANTE- INTERVENTO	POST- INTERVENTO	RIDUZIONE DAL BASELINE
EM1 [Parametro caratteristico dell'intervento]	[W/m²K]	Vedi Allegato E		#VALORE!
Q _{teorico}	[kWh]	240.786	115.506	52,0%
EE _{teorico}	[kWh]	48.031	47.357	1,4%
Q _{baseline}	[kWh]	242.829	116.486	52,0%
EE _{Baseline}	[kWh]	49.626	48.929	1,4%
Emiss. CO2 Termico	[kgCO ₂]	49.052	23.530	52,0%
Emiss. CO2 Elettrico	[kgCO ₂]	23.175	22.850	1,4%
Emiss. CO2 TOT	[kgCO ₂]	72.227	46.380	35,8%
Fornitura Termica, C _Q	[€]	17.683	8.483	52,0%
Fornitura Elettrica, C_{EE}	[€]	11.524	11.362	1,4%
Fornitura Energia, C _E	[€]	29.207	19.845	32,1%
C _{MO}	[€]	11.662	10.496	10,0%
C _{MS}	[€]	3.100	3.100	0,0%
O&M (C _{MO} + C _{MS})	[€]	14.762	13.596	7,9%
OPEX	[€]	43.969	33.440	23,9%
Classe energetica	[-]	F	E	+1 classe

	[kgCO ₂] 80.000			oni CO ₂	[€] — 50.000 —	C	_	
	70.000				_		()	
	60.000		23.175	35,8%	40.000	14.762	23,9%	_
	50.000				30.000	211702		■ 0&M (CMO + C
	40.000			22.850		44.504	13.596	■ Fornitura Elettri
5.846,8	30.000			22.850	20.000	11.524		_
	20.000		49.052		_		11.362	■ Fornitura Termi
	10.000			23.530	10.000	17.683		_
9.362	_				_		8.483	

Vettorl energetici	TIPO VETTORE	FATTORE DI CONVERSIONE	Cu		
	Tab Capitolato	[kgCO ₂ /kWh]	[€/kWh]		
Vettore termico	Gas naturale	0,202	0,073		
Vettore elettrico	Flettricità	0.467	0.232		

1 [Anni]

4,0% [%]


0,5% [%]

0,7% [%]

0,5% [%] 0,0% [%] 3,5% [%]

Figura 9.1 – EEM1: Flussi di Cassa, con e senza incentivi

10.528,5

Tabella 9.2 – Risultati dell'analisi di convenienz	a della	EEM:
DADAGEDO CINAMENADIO		

Tasso di inflazione vettore energetico f

Deriva dell'inflazione vettore energetico f'_{ve}

Tasso di inflazione manutenzioni

PARMETRO FINANZIARIO		U.M.	VALORE
Investimento Iniziale	I ₀	€	17.544
Oneri Finanziari %I ₀	OF	[%]	3,0%
Aliquota IVA	%IVA	[%]	22,0%
Anno recupero erariale IVA	n _{IVA}	anni	3
Vita utile	n	anni	15
Incentivo annuo	В	€/anno	-
Durata incentivo	n _B	anni	1
Tasso di attualizzazione	i	[%]	3,5%
INDICE FINANZIARIO DI PROGETTO		VALORE SENZA INCENTIVI	VALORE CON INCENTIVI
Tempo di rientro semplice	TRS	1,7	1,7

Tempo di rientro attualizzato TRA

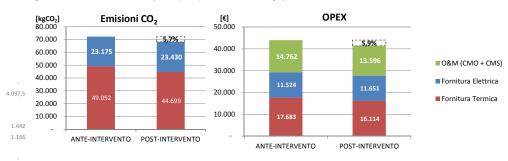
Valore attuale netto VAN 1,9 1,9 83.408 83.408 Tasso interno di rendimento TIR 53,2% 53,2% 4,75 4,75 Indice di profitto

TRS= 1,7 anni TRA= 1,9 anni

		L	2	3 4	5	6		7 8	9	10	11	12	13	14	15	16	
											10.358,0		9.737,9		10.358,0		
					OPEX PRE	OPEX POST	Incentivi	Rissparmi		FCFO	2	VAN	2	FCFO	2	VAN	
					542.942	411.388	-	131.554		116.647		83.408		116.647		83.408	
			CAPEX		cc	OSTI	R	ICAVI		F	lusso di cassa ser	nza incentivi			Flusso di cassa co	n incentivi	
	Anno	lo		Rimborso IVA	OPEX PRE	OPEX POST	INCENTIVI	RISPARMI OPEX	Fattore di annualità	FCFO			FCCA	FCFO			FC
0		- 17.544	1 - 52	6 -					1,000	18.070 -	18.070 -	18.070 -	18.070	18.070 -	18.070 -	18.070 -	
1		L		-	36.389	27.662	-	8.727	0,962	8.727 -	9.343	8.391 -	9.679	8.727 -	9.343	8.391 -	
2		2		3.164	36.741	27.916	-	8.825	0,925	11.989	2.646	11.085	1.406	11.989	2.646	11.085	
3		3		-	37.097	28.173	-	8.925	0,889	8.925	11.570	7.934	9.340	8.925	11.570	7.934	
4		ı		-	37.457	28.432	-	9.025	0,855	9.025	20.596	7.715	17.055	9.025	20.596	7.715	
5		5		-	37.821	28.694	-	9.127	0,822	9.127	29.723	7.502	24.556	9.127	29.723	7.502	
6		5		-	38.189	28.959	-	9.230	0,790	9.230	38.953	7.295	31.851	9.230	38.953	7.295	
7		,		-	38.561	29.227	-	9.334	0,760	9.334	48.287	7.093	38.944	9.334	48.287	7.093	
8		3		-	38.937	29.497	-	9.440	0,731	9.440	57.727	6.897	45.842	9.440	57.727	6.897	
9		,		-	39.317	29.771	-	9.546	0,703	9.546	67.273	6.707	52.549	9.546	67.273	6.707	
10	1	o		-	39.701	30.047	-	9.654	0,676	9.654	76.927	6.522	59.071	9.654	76.927	6.522	
11	1	L		-	40.090	30.326	-	9.763	0,650	9.763	86.690	6.342	65.412	9.763	86.690	6.342	
12	1	2		-	40.482	30.609	-	9.874	0,625	9.874	96.564	6.167	71.579	9.874	96.564	6.167	
13	1	3		-	40.879	30.894	-	9.985	0,601	9.985	106.549	5.997	77.576	9.985	106.549	5.997	
14	1	ı		-	41.280	31.182		10.098	0,577	10.098	116.647	5.831	83.408	10.098	116.647	5.831	

CAPITOLO EEM5: Caldaia

Legenda Output


NB: Duplicare il presente foglio tante volte quante sono le EEM analizzate

Input

Tabella 8.1 – Risultati analisi EEM1 – [nome intervento]

CALCOLO RISPARMIO		ANTE- INTERVENTO	POST- INTERVENTO	RIDUZIONE DAL BASELINE
EM1 [Parametro caratteristico dell'intervento]	[W/m²K]	Vedi Allegato E		#VALORE!
Q _{teorico}	[kWh]	240.786	219.421	8,9%
EE _{teorico}	[kWh]	48.031	48.559	-1,1%
Q _{baseline}	[kWh]	242.829	221.283	8,9%
EE _{Baseline}	[kWh]	49.626	50.171	-1,1%
Emiss. CO2 Termico	[kgCO ₂]	49.052	44.699	8,9%
Emiss. CO2 Elettrico	[kgCO ₂]	23.175	23.430	-1,1%
Emiss. CO2 TOT	[kgCO ₂]	72.227	68.129	5,7%
Fornitura Termica, C _Q	[€]	17.683	16.114	8,9%
Fornitura Elettrica, C _{EE}	[€]	11.524	11.651	-1,1%
Fornitura Energia, C _E	[€]	29.207	27.765	4,9%
C _{MO}	[€]	11.662	10.496	10,0%
C _{MS}	[€]	3.100	3.100	0,0%
O&M (C _{MO} + C _{MS})	[€]	14.762	13.596	7,9%
OPEX	[€]	43.969	41.360	5,9%
Classe energetica	[-]	F	F	0 classi

Figura 8.2 -	 EEM1: Riduzione dei 	costi operativi (OPFY) a della	emissioni di CO.	a nartire dalla haci	alir

	Vettorl energetici	TIPO VETTORE	FATTORE DI CONVERSIONE	Cu
		Tab Capitolato	[kgCO ₂ /kWh]	[€/kWh]
ĺ	Vettore termico	Gas naturale	0,202	0,073
ı	Vettore elettrico	Elettricità	0,467	0,232

18.542 [€]

1 [Anni]

18.542 [€/anno]

4,0% [%]

0,5% [%] 0,7% [%] 0,5% [%] 0,0% [%] 3,5% [%]

Figura 9.1 – EEM1: Flussi di Cassa, con e senza incentivi

2.608,5

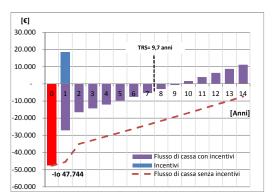


Figura 9.2 – EEM1: Flussi di Cassa Attualizzati, con e senza incentivi

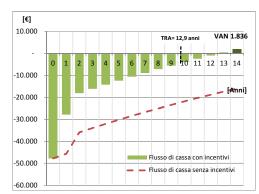


Tabella 9.2 – Risultati dell'analisi di convenienza della EEN

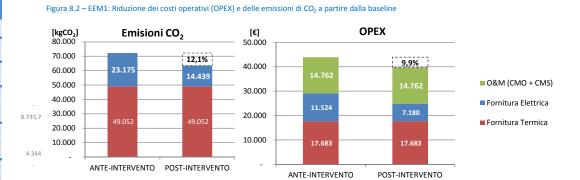
Tasso di inflazione manutenzioni

Investimento Iniziale	I ₀	€	46.354
Oneri Finanziari %I ₀	OF	[%]	3,0%
Aliquota IVA	%IVA	[%]	22,0%
Anno recupero erariale IVA	n _{IVA}	anni	3
Vita utile	n	anni	15
Incentivo annuo	В	€/anno	18.542
Durata incentivo	n _B	anni	1
Tasso di attualizzazione	i	[%]	3,5%
INDICE FINANZIARIO DI PROGETTO		VALORE SENZA INCENTIVI	VALORE CON INCENTIVI
Tempo di rientro semplice	TRS	17,7	9,7
Tempo di rientro attualizzato	TRA	22,6	12,9
Valore attuale netto	VAN	- 15.993	1.836
Tassa interno di randimento	TID	2.59/	E 09/

TRS= 9,7 anni TRA= 12,9 anni

	1	2	3	4 5	6	7	7 8	9	10	11	12	13	14	15	16	
										2.692,0		2.116,8		4.936,0		
				OPEX PRE	OPEX POST	Incentivi	Rissparmi		FCFO	15	VAN	15	FCFO	10	VAN	
_				542.942	510.921	18.542	32.021		7.364	-	15.993		11.177		1.836	
			CAPEX	C	OSTI	RI	CAVI			Flusso di cassa se	nza incentivi			Flusso di cassa co	on incentivi	
	Anno	lo	OF Rimborso IV	OPEX PRE	OPEX POST	INCENTIVI	RISPARMI OPEX	Fattore di annualità	FCFO			FCCA	FCFO			
0	0	- 46.354 -	1.391 -					1,000 -	47.744 -	47.744 -	47.744 -	47.744	- 47.744 -	47.744 -	47.744 -	Ì
1	1			36.389	34.232	18.542	2.157	0,962	2.157 -	45.587	2.074 -	45.670	20.699 -	27.046	19.903 -	
2	2		8.3	9 36.741	34.565		2.176	0,925	10.535 -	35.052	9.740 -	35.930	10.535 -	16.511	9.740 -	
3	3			37.097	34.902	-	2.196	0,889	2.196 -	32.856	1.952 -	33.978	2.196 -	14.315	1.952 -	
4	4			37.457	35.242	-	2.215	0,855	2.215 -	30.641	1.894 -	32.084	2.215 -	12.100	1.894 -	
5	5			37.821	35.586	-	2.235	0,822	2.235 -	28.406	1.837 -	30.247	2.235 -	9.864	1.837 -	
6	6			38.189	35.934	-	2.255	0,790	2.255 -	26.151	1.782 -	28.465	2.255 -	7.609	1.782 -	
7	7			38.561	36.286	-	2.275	0,760	2.275 -	23.876	1.729 -	26.736	2.275 -	5.334	1.729 -	
8	8			38.937	36.641	-	2.296	0,731	2.296 -	21.580	1.677 -	25.058	2.296 -	3.038	1.677 -	
9	9			39.317	37.001	-	2.316	0,703	2.316 -	19.263	1.627 -	23.431	2.316 -	722	1.627 -	
10	10		-	39.701	37.364		2.337	0,676	2.337 -	16.926	1.579 -	21.852	2.337	1.615	1.579 -	
11	11			40.090	37.731	-	2.358	0,650	2.358 -	14.568	1.532 -	20.320	2.358	3.974	1.532 -	
12	12			40.482	38.103	-	2.380	0,625	2.380 -	12.188	1.486 -	18.834	2.380	6.353	1.486 -	
13	13			40.879	38.478	-	2.401	0,601	2.401 -	9.787	1.442 -	17.392	2.401	8.754	1.442	
14	14			41.280	38.857	-	2.423	0,577	2.423 -	7.364	1.399 -	15.993	2.423	11.177	1.399	

CAPITOLO EEM5: Caldaia


Output

Input

NB: Duplicare il presente foglio tante volte quante sono le EEM analizzate

Tabella 8.1 – Risultati analisi EEM1 – [nome intervento]

Tabella 0.1 Moultati alialisi EE	ivit filonie inte	erventoj		
CALCOLO RISPARMIO	U.M.	ANTE- INTERVENTO	POST- INTERVENTO	RIDUZIONE DA BASELINE
EM1 [Parametro caratteristico dell'intervento]	[W/m²K]	Vedi Allegato E		#VALORE
Q _{teorico}	[kWh]	240.786	240.786	0,09
EE _{teorico}	[kWh]	48.031	29.926	37,79
Q _{baseline}	[kWh]	242.829	242.829	0,09
EE _{Baseline}	[kWh]	49.626	30.920	37,79
Emiss. CO2 Termico	[kgCO ₂]	49.052	49.052	0,09
Emiss. CO2 Elettrico	[kgCO ₂]	23.175	14.439	37,79
Emiss. CO2 TOT	[kgCO ₂]	72.227	63.491	12,19
Fornitura Termica, C _Q	[€]	17.683	17.683	0,09
Fornitura Elettrica, C _{EE}	[€]	11.524	7.180	37,79
Fornitura Energia, C _E	[€]	29.207	24.863	14,99
C _{MO}	[€]	11.662	11.662	0,09
C _{MS}	[€]	3.100	3.100	0,09
O&M (C _{MO} + C _{MS})	[€]	14.762	14.762	0,09
OPEX	[€]	43.969	39.625	9,99
Classe energetica	[-]	F	F	0 class

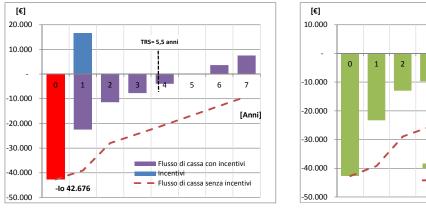
Vettorl energetici	TIPO VETTORE Tab Capitolato	FATTORE DI CONVERSIONE [kgCO ₂ /kWh]	Cu [€/kWh]
Vettore termico	Gas naturale	0,202	0,073
Vettore elettrico	Elettricità	0.467	0.232

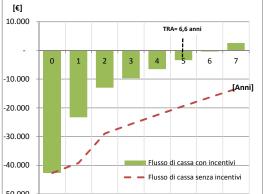
16.573 [€] 1 [Anni] 16.573 [€/anno]

4,0% [%] 0,5% [%] 0,7% [%] Deriva dell'inflazione vettore energetico f'_{ve} 0,5% [%] 0,0% [%] **3,5%** [%] Tasso di inflazione manutenzioni Deriva dell'inflazione manutenzioni

Tabella 9.2 – Risultati dell'analisi di convenienza della EEM1

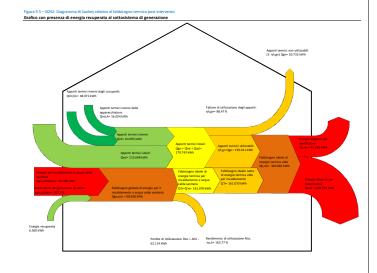
Oneri Finanziari %I ₀	OF	[%]	3,0%
Aliquota IVA	%IVA	[%]	22,0%
Anno recupero erariale IVA	n _{IVA}	anni	3
Vita utile	n	anni	8
Incentivo annuo	В	€/anno	16.573
Durata incentivo	n _B	anni	:
Tasso di attualizzazione	i	[%]	3,5%
INDICE FINANZIARIO DI PROGETTO		VALORE SENZA INCENTIVI	VALORE CON INCENTIVI
Tempo di rientro semplice	TRS	10,2	5,5
Tempo di rientro attualizzato	TRA	11,7	6,0
Valore attuale netto	VAN	- 13.386	2.550
Tasso interno di rendimento	TIR	-6,2%	6,49
. II II Co.			

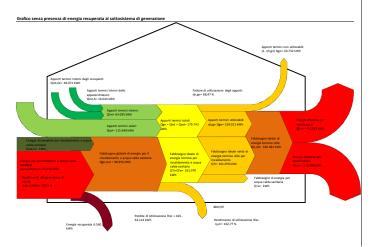



4.343.8

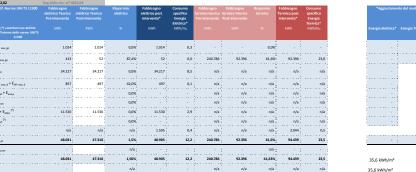
[€]

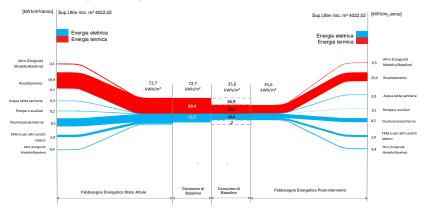
41.433



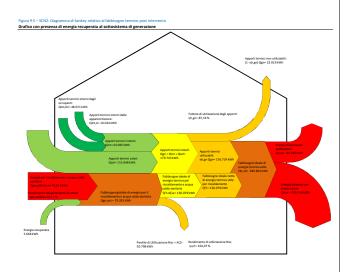


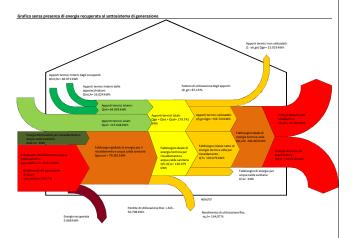
TRS= 5,5 anni TRA= 6,6 anni VAN= 2550,0 €


		1	2	3	4	5	6	7	. 8	9	10	11	12	13	14	15	16	-
												4.203,0		3.661,3		7.721,0		6.460
						OPEX PRE	OPEX POST	Incentivi	Rissparmi		FCFO	8	VAN	8	FCFO	6	VAN	
						262.256	236.103	16.573	26.153		- 9.052	-	13.386		7.522		2.550	
				CAPEX		CO	OSTI	RI	CAVI			Flusso di cassa ser	nza incentivi			Flusso di cassa o	on incentivi	
	Anno				Rimborso IVA	OPEX PRE	OPEX POST	INCENTIVI	RISPARMI OPEX	Fattore di annualità	FCFO		FCA	FCCA	FCFO	FCC	FCA	FCCA
0		0 -	41.433 -	1.243	-					1,000	- 42.676 -	42.676 -	42.676 -	42.676	42.676 -	42.676 -	42.676 -	42.6
L		1			-	36.389	32.785	16.573	3.603	0,962	3.603 -	39.073	3.465 -	39.211	20.177 -	22.499	19.401 -	23.2
		2			7.472	36.741	33.094	-	3.647	0,925	11.118 -	27.954	10.279 -	28.932	11.118 -	11.381	10.279 -	12.9
3		3			-	37.097	33.407	-	3.691	0,889	3.691 -	24.264	3.281 -	25.651	3.691 -	7.691	3.281 -	9.7
4		4			-	37.457	33.722	-	3.735	0,855	3.735 -	20.529	3.193 -	22.458	3.735 -	3.955	3.193 -	6.5
5		5			-	37.821	34.041	-	3.780	0,822	3.780 -	16.749	3.107 -	19.351	3.780 -	175	3.107 -	3.4
6		6			-	38.189	34.364	-	3.825	0,790	3.825 -	12.923	3.023 -	16.328	3.825	3.650	3.023 -	39
7		7			-	38.561	34.690	-	3.872	0,760	3.872 -	9.052	2.942 -	13.386	3.872	7.522	2.942	2.55



Legenda Output Input




abella 9.6 – Risultati analisi SCN2– [nome interven	to]			
		ANTE- INTERVENTO	POST- INTERVENTO	RIDUZIONE DAL BASELINE
M4 installazione valvole				#DIV/01
MS sostituzione Caldaia	Rendimento generazione [%]	91,7	107,1	-16,8%
house	[kWh]	240.786	92.396	61,6%
Emmis	[kWh]	48.031	47.201	1,7%
bastine	[kWh]	242.829	93.180	61,6%
Elactor	[kWh]	49.626	48.768	1,7%
miss. CO2 Termico	[kgCO ₂]	49.052	18.822	61,6%
wiss. CD2 Elettrico	[kgCO ₂]	23.175	22.774	1,7%
niss. CO2 TOT	[kgCO ₂]	72.227	41.597	42,4%
rmitura Termica, C _q	[4]	17.683	6.785	61,6%
ornitura Elettrica, C _{st}	[4]	11.524	11.325	1,7%
ornitura Energia, C _c	(€)	29.207	18.110	38,0%
100	[4]	11.662	10.496	10,0%
	[4]	3.100	3.100	0,0%
&M (C _{MD} + C _{MI})	[4]	14.762	13.596	7,9%
PEX	[€]	43.969	31.706	27,9%
asse energetica	H		D	+2 classi

	[kWh]	48.031	47.201	1,7%	
	[kWh]	242.829	93.180	61,6%	
	[kWh]	49.626	48.768	1,7%	
Termico	[kgCO ₂]	49.052	18.822	61,6%	
Elettrico	[kgCO ₂]	23.175	22.774	1,7%	
тот	[kgCO ₂]	72.227	41.597	42,4%	
ermica, C _Q	[4]	17.683	6.785	61,6%	
ettrica, C _{ss}	[4]	11.524	11.325	1,7%	30.629,9
nergia, C _c	[¢]	29.207	18.110	38,0%	
	[4]	11.662	10.496	10,0%	
	[4]	3.100	3.100	0,0%	11.097
Cun)	[4]	14.762	13.596	7,9%	1.166
	[€]	43.969	31.706	27,9%	
getica	H	,	D	+2 classi	
•					12.263,1
				1	

[kgCO ₂] 80.000	Emision	ni CO ₂	[€] 50.000 —	OI	PEX	_
70.000					£	
60.000	23.175	42.4%	40.000	14.762	27,9%	_
50.000			30.000		-	■ 0&M (CM
40.000			_	11.524	13.596	■ Fornitura
30.000		22.774	20.000			■ Fornitura
20.000	49.052		10.000	17.683	11.325	

Legenda Output		di sankey attreverso gli spessori delle line lello. In assenza della voce "altro (congrui			erficie utile delle zone
Sup, Utile risc. m ² 4022,02	Sup, Utile risc. m ² 4022,02				
PARAMETRO Rif. Norma UNI	TS 11300 Fabbisogno Fabbisogn elettrico Teorico elettrico Teo		Consumo Fabbisogno specifico termico teorico ter	Fabbisogno Risparmio rmico Teorico termico	Fabbisogno Consumo Termico post specifico

Sup,Utile risc. m²	4022,02	Sup, Utile risc. m ² 4	1022,02										
PARAMETRO	Rif. Norma UNITS 11300	Fabbisogno elettrico Teorico Pre-Intervento	Fabbisogno elettrico Teorico Post-Intervento	Risparmio elettrico	Fabbisogno elettrico post intervento*	Consumo specifico Energia Elettrica*		Fabbisogno termico Teorico Post-Intervento	Risparmio termico	Fabbisogno Termico post intervento*	Consumo specifico Energia Termica*	"Aggiustament	
	(*) contributi non definiti all'interno delle norme UNITS 11300			*	kWh	kWh/m ₂	kWh			kWh	kWh/m ₂	Energia elettrica*	Energia Termica*
qua calda sanitaria	E _{We max, gin}	1.014	1.014	0,0%	1.014			-	0,0%		-		-
caldamento	E _{Hraue, gri}	413	11	97,3%	11	0,0	240.786	73.613	69,4%	73.613	18,3	-	
minazione interna	E _{Lint}	34.217	16.111	52,9%	16.111	4,0		n/a	n/a		n/a	-	
mpe e ausiliari	E _{Wraux, d} + E _{Wraux, d}	857	322	62,4%	322			n/a		n/a	n/a		
	E _{ve,el} + E _{aux,e}			0,0%	-		n/a	n/a	n/a	n/a	n/a	-	
	Q _{caux}			0,0%	-	-	n/a	n/a	n/a		n/a		
M e vari altri carichi erni	E _T + E _{abro} (*)	11.530	11.530	0,0%	11.530	2,9	n/a	n/a	n/a	n/a	n/a	-	
	E _{trauf} (*)			0,0%	-		n/a	n/a	n/a	n/a	n/a	-	
ro (Congruità odello/Baseline)		n/a	n/a	n/a	1.595	0,4		n/a	n/a	2.044	0,5		
ITALE	E _{del,el}	48.031	28.989	39,6%	30.584	7,6	240.786	73.613	69,4%	75.657	18,8	-	
	E _{exp,res}			n/a	-		-		n/a	-			
isumo Post irvento*		48.031	28.989	39,65%	30.584	7,6	240.786	73.613	69,43%	75.657	18,8	26,4 kWh/m²	
	1			n/a	-		n/a	n/a	n/a	n/a	n/a	26.4 kWh/m ²	

	<u></u>				
	Figura 9.6 – SCN2: Bilancio energetico complessi	vo dell'edificio post in	ntervento		
[kWh/m²/anno]	Sup,Utile risc. m² 4022,02			Sup,Utile risc. m² 4022,02	[kWh/m ₂ anno]
	Energia elettrica Energia termica			Energia elettrica Energia termica	
Altro (Congruità 0,5 Modello/Baseline)					0,5 Altro (Congruità 0,5 Modello/Baseline)
Riscaldamento 0,1	72,7	72,7 kWh/m²	26,4 kWh/m²	26,4 kWh/m²	18,3 Riscaldamento
Acqua calda sanitaria 0,3			41,6		0,3 Acqua calda sanitaria
Pompe e ausiliari 0,2		60,4	18,8		0,1 Pompe e ausiliari
Illuminazione interna 8,5		12,3	3.4 4,7		4,0 Illuminazione interna
FEM e vari altri carichi interni					FEM e vari altri carichi 2,9 interni
Altro (Congruità 0,4 Modello/Baseline)					0,4 Altro (Congruità Modello/Baseline)
	Fabbisogno Energetico Stato Attule	Consumo di Baseline	Consumo di Baseline	Fabbisogno Energetico Post-intervento	
	ľ '	ľ ľ	ľ ľ		1

Legenda MB: For effettuere Tarolita di accionibilità finanziaria dello comario utilizzare è file Analiseff uti liapati

		ANTE- INTERVENTO	POST- INTERVENTO	RIDUZIONE DAL BASELINE	
EM1 Cappotto pareti verticali	Trasmittanza [W/m²K]	Vedi Allegato E	<0,26	#VALORE!	
EM4 installazione valvole				ADIV/01	
EMS sostituzione Caldaia	Rendimento generazione [%]	91,7	107,7	-17,4%	
EM6 Installazione lampade a LED	Potenza installata (kW)	22.344	10.264	54,1%	
Q _{territo}	[kWh]	240.786	73.978	69,3%	
EE _{lmorke}	[kWh]	48.031	29.069	39,5%	
Q _{tester}	[kWh]	242.829	74.606	69,3%	
Efficience	[kWh]	49.626	30.034	39,5%	
Emiss. CO2 Termico	[kgCO ₂]	49.052	15.070	69,3%	
Emiss. CO2 Elettrico	[kgCO ₂]	23.175	14.026	39,5%	
Emiss. CO2 TOT	[kgCO ₂]	72.227	29.096	59,7%	43.130,
Fornitura Termica, C _Q	[4]	17.683	5.433	69,3%	
Fornitura Elettrica, C _{EE}	[4]	11.524	6.974	39,5%	
Fornitura Energia, C _c	[€]	29.207	12.407	57,5%	16.800
c _{so}	[4]	11.662	10.496	10,0%	1.16
C _{MS}	[6]	3.100	3.100	0,0%	
O&M (C _{MO} + C _{MI})	[6]	14.762	13.596	7,9%	
OPEX	[6]	43.969	26.003	40,9%	17.966,0
Classe energetica	[-]	,	D	+2 classi	

		FATTORE DI CONVERSIONE	
ttore termico	Gas naturale	0,202	0,073
ttore elettrico	Elettricità	0,467	0,232